ments of the framework atoms and place changing of the Li atoms.

References

Tscherry, V. \& Laves, F. (1970). Naturwissenschaften, 57, 194.

Tscherry, V., Schulz, H. \& Laves, F. (1972a). Z. Kristal$\log r .135,161$.
Tscherry, V., Schulz, H. \& Laves, F. (1972b). Z Kristallogr. 135, 175.
Schulz, H. \& Tscherry, V. (1972). Acta Cryst, B28, 2168.

The Crystal and Molecular Structure of 1-p-Tolyl-3-(α-cyano)benzylidenetriazene, $\mathbf{C}_{15} \mathrm{H}_{12} \mathbf{N}_{4}$ *

By J.W.Schilling \dagger and C.E. Nordman
Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48104, U.S.A.

(Received 12 August 1971 and in revised form 21 January 1972)

Abstract

The compound 1-p-tolyl-3-(α-cyano)benzylidenetriazene, $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{4}$, is a product of the thermal decomposition of 1-p-tolyl-4-phenyl-5-azidotriazole, crystallizing from petroleum ether in the monoclinic space group $P c$ with $a=4.036(2), b=11 \cdot 109(2), c=14.805(8) \AA, \beta=93 \cdot 57(6)^{\circ}$, and two molecules per cell. 1019 reflections were recorded by the integrating oscillation and integrating Weissenberg techniques. The structure was solved by the vector search method from a sharpened Patterson function assuming the existence of the p-toluidyl skeleton, $\mathrm{C}_{7} \mathrm{~N}$. The final value of $R \equiv \sum\left|F_{\mathrm{obs}}-F_{\text {catc }}\right| / \Sigma\left|F_{\mathrm{obs}}\right|$ after refinement by full-matrix least-squares methods is 0.077 . In previously determined aromatic triazene structures, $\mathrm{R}_{1}-\mathrm{N}=\mathrm{N}-\mathrm{N}-\left(\mathrm{R}_{2}, \mathrm{R}_{3}\right)$, the triazene moiety usually displays equivalent $\mathrm{N}-\mathrm{N}$ bond distances (of about $1.25 \AA$) when R_{2} or R_{3} is hydrogen or when the triazenido anion is acting as a bidentate ligand to a transition metal cation; in this structure neither R_{2} nor R_{3} is hydrogen and the $\mathrm{N}-\mathrm{N}$ distances are nonequivalent (1.24 and $1.40 \AA$). This study is inconclusive regarding the hypothesis of Smith, Krbechek \& Resemann [J. Amer. Chem. Soc. (1964). 86, 2025] (based on its chemical reactions) that $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{4}$ occurs in solution in an equilibrium between the title compound and a closed-ring nitrene.

Introduction

A product, $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{4}$, of unknown structure, obtained from the thermal decomposition of 1,4-diphenyl-5azidotriazole, was thought to exist in solution as an equilibrium mixture of the open chain triazene (I) and a stable nitrene (II):

(I)
(II)

[^0](Smith, Krbechek \& Resemann, 1964). The compound crystallizes very readily from a variety of nonpolar solvents in the orthorhombic space group Pbca with $a=27 \cdot 6, b=11 \cdot 4, c=7 \cdot 82 \AA ; Z=8$.

A structure analysis was undertaken by the vectorsearch method (Nordman, 1966; Nordman \& Schilling, 1970; Schilling, 1970a) upon an analogue, $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{4}$, the product of $1-p$-tolyl-4-phenyl-5-azidotriazole. This substance [compound (III), M.W. 248.31] displays the same chemical properties and would suffice to confirm the proposed structure, but since it crystallizes in space group $P c$, only a one-dimensional determination of fragment location is required (i.e. with respect to the glide plane) rather than the three-dimensional location required in space group Pbca. The possibilities for the structure of (III) are analogous to (I) and (II) above, and will be designated CH_{3}-(I) and CH_{3}-(II).

A variety of possible structures were eliminated by Smith et al. on the basis of physical and chemical properties, but the positive evidence for the structure was inconclusive. $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{4}$ and $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{4}$ are dark red in color. The infrared spectrum normally exhibits no bands higher than $1600 \mathrm{~cm}^{-1}$, but under certain conditions a weak band at $2200 \mathrm{~cm}^{-1}$ occurs, suggesting the existence of a cyano group. The n.m.r. spectrum of $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{4}$ shows six aromatic hydrogen atoms and two pairs of hydrogens at 1.75 and $2 \cdot 1 \tau$; the former are
as far downfield as aromatic hydrogen atoms ortho to an electron-withdrawing group; they are not para hydrogen atoms, since the same pair occurs in $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{4}$. Reduction by various means, with the uptake of one mole of hydrogen, gives the amine corresponding to the starting material, or with cold dithionite, its openchain isomer:

or

Smith et al. proposed an equilibrium between I and II, because some chemical reactions in which the $N(1)-C(5)$ bond appears intact in the products would not be expected to arise from I and yet the infrared band at $2200 \mathrm{~cm}^{-1}$ implies the existence of the nitrile. The analogous pyrazole system behaves similarly (Smith, Breen, Hajek \& Awang, 1970) but reduction of the product analogous to (III) produces an openchain intermediate product which progresses to the cyclic product. However, it is possible to produce an azo dimer of the closed-ring pyrazole analogue by heating the latter under very specific conditions, leading these authors to infer a (possibly small) concentration of the cyclic form.

Experimental

Crystals of $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{4}$, slowly grown from petroleum ether, are dark red and tend to be either needle-like (with a along the needle) or chunky with few well defined faces; the latter are prone to display pronounced diffuse reflection. The space group was uniquely determined as $P c$ from the systematic absence of reflections $h 0 l$ with l odd, and from a strikingly positive pyroelectricity test. The lattice parameters were determined by a least-squares fit to 19 observations of high-angle reflections utilizing the $\mathrm{Cu} K\left(\alpha_{1}-\alpha_{2}\right)$ splitting observed in back-reflection oscillation photographs. Crystal data are as follows:

Space group $P c ; a=4 \cdot 036$ (2), $b=11 \cdot 109$ (2),
$c=14 \cdot 805$ (8) \AA,
$\beta=93.57$ (6) ${ }^{\circ} ; \mu=6.28 \mathrm{~cm}^{-1}$ (for $\mathrm{Cu} K \alpha$);
$\mathrm{V}=662 \cdot 51 \AA^{3} ; F(000)=260$.
The crystal density was observed by flotation in potassium tartrate solution to be $1 \cdot 23 ; d$ (calc) $=1 \cdot 245$. From the molecular weight, cell dimensions and crystal density, Z was determined as 2 .

Intensity data were collected at room temperature using nickel-filtered $\mathrm{Cu} K \alpha$ radiation ($\lambda=1.5418 \AA$). A crystal was mounted about a for integrated equiinclination Weissenberg photographs (nets $n k l, n=0$, $1,2,3$), and a second crystal about b for integrated
general-inclination oscillation photographs. Since the integrating motion of the film was inadequate in the axial direction when the needle axis a was along the spindle, only tangential integration was used in the Weissenberg photographs. The needle was of approximately constant radius $(0.25 \times 1.5 \mathrm{~mm})$, and so the resulting peak heights were taken as proportional to the integrated intensities. For the data collected about b, the crystal size was $0.7 \times 0.5 \times 1.0 \mathrm{~mm}$; the inclination angle, μ, was 25°. In all cases five layers of Ilford G X-ray film were used. The intensities were recorded on a Joyce-Loebl microdensitometer. The oscillation data were corrected for the variation in obliquity of the diffracted beams by the method of Cox \& Shaw (1930). Raw intensities were placed on a common scale by an algorithm which determines the logarithmic average of the scales of the individual datasets (Nordman, 1960). No absorption correction was made. The Lorentz-polarization factor was applied, and the scale factor, K (applied to $F_{\text {obs }}$) and overall anisotropic thermal parameters $\beta_{i j}$ were determined by a modification of Wilson's method (Schilling, 1968). Table 1 compares values determined by Wilson statistics with a posteriori values of the Wilson parameters based on structure-factor least-squares calculations. The latter were determined after the final structure refinement by setting all individual atom thermal parameters to zero and refining overall anisotropic thermal parameters plus scale factor; and similarly for the overall isotropic temperature factor.

Table 1. Overall thermal parameters

* Values of $\beta_{i j}$ in this column are those equivalent to isotropic motion.

Structure determination

Patterson coefficients for reflections ' m ' were computed as:

$$
C_{m}=\left(Q_{m} F_{\mathrm{obs}}{ }^{2}-\sum Z_{k}^{2}\right) \exp \left[-D\left(\sin \theta_{m} / \lambda\right)^{2}\right]
$$

where

$$
Q=K^{2} \sum Z_{k}^{2} /\left(\sum f_{k}^{2}\right) \exp \left(-\sum_{y} h_{i} h_{j} \beta_{i j}\right) .
$$

The factor D is a damping parameter, chosen to be zero. The Patterson function was computed at the points of a $60 \times 60 \times 60$ grid; negative values of the Patterson function were set to zero. All searches used
a four-point interpolated readout of the stored Patterson function.

Based on chemical evidence, the eight-atom p toluidyl fragment was assumed. Intrafragment vectors were generated with the fragment in a standard reference orientation, and all unique orientations were explored for matching high ground in the Patterson

Table 2. Structure factors
Columns are: Miller index, $I ; 10^{2} F_{\text {obs }}$ and $10^{2} \mid F_{\text {calc }}$ (electrons); reflections considered to be unobserved have $F_{\text {ob }}$ designated ' $<$ '.

map. There was only one significant peak in the imageseeking function. Another orientation search using only a benzene skeleton as the assumed group showed no additional peaks; this indicates that both phenyl rings are in nearly the same orientation and was sufficient to exclude CH_{3}-(II) as the structure and necessary, but not sufficient, to confirm CH_{3}-(I).

The location of the assumed fragment is a onedimensional problem in space group $P c$, since the origin is arbitrary in x and z. A translational search using vectors generated by the glide plane between properly oriented p-toluidyl groups indicated a value of $y=0.35$ for the fragment origin (arbitrarily chosen as the nitrogen atom), giving a partial structure upon which a sixteen-fold Patterson superposition was performed. This produced more strong peaks than the number of undetermined atoms, falling in a hexagonal array. It later became clear that the planarity of the molecule, its special orientation (nearly parallel to the glide plane) and the dominant 'hexagonality' of the structure caused this effect. Chemically reasonable peaks were chosen and four low-resolution difference Fourier syntheses readily produced a trial structure containing a correct set of all nineteen nonhydrogen atoms. The Fourier coefficients in these syntheses were weighted according to the scheme

$$
\begin{array}{ll}
W=2\left(F_{c} / F_{o}\right)^{2}-\left(F_{c} / F_{o}\right)^{4} & \text { if }\left|F_{c}\right|<\left|F_{o}\right| \\
W=1.0 & \text { otherwise }
\end{array}
$$

which gives highest weight to reflections whose calculated magnitudes are higher than those observed.

Refinement

In all refinements, Hughes's (1941) weighting scheme was used:

$$
\begin{aligned}
& V w=4 F_{\min } / F_{o} \text { if } F_{o}>4 F_{\min } ; \\
& V w=1 \text { otherwise; } \\
& \text { where } F_{\min }=3.75 \text { (raw scalc) }=0.605 \text { (absolute) }
\end{aligned}
$$

Table 3. Final space and thermal parameters
Non-hydrogen atoms

	x	y	z	β_{11}	β_{22}	β_{33}	β_{12}	β_{23}	β_{13}
$\mathrm{N}(1)$	$0 \cdot 100$	$0 \cdot 3446$ (6)	0.0000	0.094 (5)	$0 \cdot 0105$ (6)	0.0054 (3)	$0 \cdot 007$ (2)	$0 \cdot 0032$ (7)	0.003 (2)
N(2)	0.087 (3)	$0 \cdot 2467$ (6)	-0.0401 (6)	$0 \cdot 118$ (6)	$0 \cdot 0079$ (5)	$0 \cdot 0045$ (3)	0.006 (2)	-0.0017 (5)	0.011 (2)
N(3)	$0 \cdot 206$ (3)	$0 \cdot 2607$ (10)	-0.1265 (6)	$0 \cdot 095$ (6)	0.0196 (11)	$0 \cdot 0048$ (3)	0.001 (4)	$0 \cdot 0048$ (9)	0.007 (2)
N(4)	-0.138 (3)	-0.0144 (9)	-0.1131 (7)	$0 \cdot 148$ (8)	0.0170 (10)	$0 \cdot 0059$ (4)	-0.023 (4)	$0 \cdot 0013$ (9)	0.008 (3)
C(1)	-0.015 (3)	$0 \cdot 3422$ (6)	0.0882 (6)	0.094 (6)	$0 \cdot 0093$ (7)	$0 \cdot 0050$ (4)	0.000 (3)	0.0000 (7)	0.000 (2)
C(2)	-0.177 (3)	$0 \cdot 2481$ (8)	$0 \cdot 1296$ (7)	0.093 (7)	0.0014 (8)	$0 \cdot 0048$ (4)	-0.004 (3)	-0.0006 (8)	0.007 (2)
C(3)	-0.261 (3)	$0 \cdot 2542$ (10)	$0 \cdot 2179$ (8)	0.095 (7)	$0 \cdot 0139$ (9)	$0 \cdot 0055$ (4)	0.003 (4)	-0.0010 (9)	0.009 (2)
C(4)	-0.190 (3)	$0 \cdot 3552$ (9)	$0 \cdot 2700$ (7)	0.092 (7)	0.0177 (11)	$0 \cdot 0044$ (4)	0.026 (4)	0.0015 (10)	0.014 (2)
C(5)	-0.280 (4)	$0 \cdot 3608$ (16)	$0 \cdot 3665$ (9)	$0 \cdot 130$ (10)	0.0276 (21)	$0 \cdot 0054$ (5)	$0 \cdot 009$ (8)	-0.0024 (15)	0.018 (3)
C(6)	-0.052 (4)	$0 \cdot 4563$ (13)	$0 \cdot 2289$ (9)	$0 \cdot 108$ (9)	0.0186 (15)	$0 \cdot 0064$ (5)	-0.001 (6)	-0.0026 (15)	0.004 (3)
C(7)	0.040 (3)	$0 \cdot 4453$ (9)	$0 \cdot 1401$ (8)	0.092 (7)	$0 \cdot 0150$ (11)	$0 \cdot 0069$ (5)	0.005 (4)	$0 \cdot 0028$ (11)	0.005 (3)
C(8)	$0 \cdot 002$ (3)	0.0652 (8)	-0.1353 (7)	0.096 (6)	0.0126 (8)	$0 \cdot 0043$ (3)	-0.004 (3)	-0.0020 (8)	0.006 (2)
C(9)	$0 \cdot 164$ (2)	$0 \cdot 1600$ (8)	-0.1724 (5)	0.089 (6)	$0 \cdot 0124$ (9)	$0 \cdot 0042$ (3)	-0.010 (3)	-0.0011 (8)	0.006 (2)
C(10)	$0 \cdot 276$ (3)	$0 \cdot 1521$ (6)	-0.2648 (6)	0.065 (5)	$0 \cdot 0102$ (7)	$0 \cdot 0044$ (3)	0.009 (2)	$0 \cdot 0026$ (7)	0.003 (2)
C(11)	$0 \cdot 427$ (3)	$0 \cdot 2535$ (8)	-0.3005 (8)	0.085 (6)	0.0097 (7)	$0 \cdot 0059$ (4)	0.013 (3)	-0.0014 (8)	0.005 (2)
$\mathrm{C}(12)$	$0 \cdot 522$ (3)	$0 \cdot 2444$ (9)	-0.3912 (8)	$0 \cdot 100$ (8)	0.0129 (10)	0.0066 (5)	0.009 (4)	0.0043 (11)	0.013 (3)
C(13)	0.471 (3)	$0 \cdot 1397$ (7)	-0.4390 (7)	$0 \cdot 102$ (7)	0.0101 (8)	$0 \cdot 0054$ (4)	0.003 (3)	-0.0007 (8)	0.004 (2)
C(14)	$0 \cdot 316$ (3)	0.0467 (7)	-0.4018 (6)	$0 \cdot 104$ (7)	$0 \cdot 0103$ (7)	$0 \cdot 0043$ (3)	0.016 (3)	-0.0030 (7)	0.004 (2)
C(15)	$0 \cdot 218$ (2)	$0 \cdot 0490$ (5)	-0.3133 (6)	$0 \cdot 104$ (6)	$0 \cdot 0045$ (4)	0.0041 (3)	$-0.004(2)$	-0.0045 (5)	0.008 (2)

Table 3 (cont.)
Hydrogen atoms

	x	y	z	$B\left(\AA^{2}\right)$
H(1)	-0.248 (27)	0.163 (10)	0.071 (8)	$7 \cdot 0$ (2.6)
$\mathrm{H}(2)$	-0.429 (20)	$0 \cdot 207$ (6)	0.252 (5)	$4 \cdot 2$ (1.4)
H(3)	-0.175 (34)	0.416 (12)	0.390 (10)	3.7 (2.9)
H(4)	-0.522 (21)	$0 \cdot 321$ (6)'	$0 \cdot 372$ (5)	4.8 (1.3)
H(5)	-0.406 (23)	$0 \cdot 430$ (8)	0.387 (6)	5.6 (1.7)
H(6)	-0.031 (24)	0.519 (8)	0.251 (7)	5.6 (2.0)
H(7)	0.148 (36)	0.572 (12)	0.116 (10)	8.8 (3.9)
H(8)	0.434 (16)	$0 \cdot 328$ (6)	-0.266 (4)	$2 \cdot 4$ (1.1)
H(9)	0.596 (23)	0.331 (8)	-0.412 (6)	$6 \cdot 2(1.8)$
$\mathrm{H}(10)$	0.562 (20)	$0 \cdot 124$ (6)	-0.517 (5)	$3 \cdot 2$ (1.4)
H(11)	$0 \cdot 252$ (18)	-0.050 (7)	-0.434 (5)	4.9 (1.6)
$\mathrm{H}(12)$	$0 \cdot 117$ (12)	-0.011 (5)	-0.284 (3)	1.0 (8)

with the 146 unobserved reflections given zero weight. The quantity minimized was $\sum w_{i}\left|F_{o}-F_{c}\right|^{2}$. Form factors for C and N were those of Berghuis, Haanappel, Potters, Loopstra, MacGillavry \& Veenendaal (1955); those for H were those of Stewart, Davidson \& Simpson (1965). In the later stages of refinement, the Fortran II ORFLS program (Busing, Martin \& Levy, 1962) was used; a special algorithm for computing the least-squares matrix was incorporated to permit
full-matrix refinement of up to 230 parameters on the IBM 7090 computer (Schilling, 1970b).

The origin was fixed by holding x and z for the nitrogen atom of the p-toluidyl group constant. Refinement by diagonal least-squares methods brought $R \equiv$ $\sum\left|F_{o}-F_{\mathrm{c}}\right| / \Sigma\left|F_{o}\right|$ to $0 \cdot 125$. The twelve hydrogen atoms were then found by a difference Fourier synthesis. R was reduced to 0.077 by further least-squares refinement with all 55 heavy-atom space parameters and scale factor in one block, the 114 heavy-atom anisotropic thermal parameters and scale factor in a second, and scale factor plus hydrogen space and isotropic thermal parameters in a third, refined on alternate cycles. The penultimate cycle refined all heavy atom parameters and scale factor in a single block, i.e. holding the hydrogen atom parameters constant.

A final full-matrix cycle refining all 218 parameters (the above atomic parameters plus scale factor) made no change in R for the 1019 observed reflections, but increased the error estimates on heavy-atom space parameters by as much as 25%. The largest shifts on this cycle were 1σ for the y coordinate of $\mathrm{C}(5)$ and 2σ for the temperature factor of $\mathrm{H}(3)$. A plot of $K^{2} F_{0}^{2} G$ versus $\ln \left|F_{c} / K F_{o}\right|$ where $G=\left(1+\cos ^{2} 2 \theta\right) / \sin 2 \theta$ Nordman, 1962) for the strongest reflections showed no

Fig. 1. Fourier syntheses. Carbon and nitrogen atoms from final Fourier synthesis, contours at 1 e. \AA^{-3}, zero contour omitted; hydrogen atoms from final $\Delta \mathrm{F}$ synthesis, contour interval $\frac{1}{8} \mathrm{e} . \AA^{-3}$, zero contour omitted.
evidence of secondary extinction in the data. The final difference Fourier synthesis showed four peaks (in chemically implausible locations) of slightly less than the height of the lowest hydrogen. The least prominent hydrogen atoms (Fig. 1) are probably poorly determined. Further full-matrix refinement with a fixed, reasonable value of B for the hydrogen atoms would probably improve the determination of these atoms, but this was not felt to be sufficient reason to justify the cost. The twelve aromatic C-C distances in this molecule have an average value of $1.385 \AA$. with an r.m.s. deviation of $0.020 \AA$ from that value.

Table 2 gives observed and calculated structure factors. Maximum values are given as $F O$ for unobserved reflections. Fig. 1 shows the final Fourier syntheses of the C, N and H atoms.

Structure

Table 3 gives the final space and thermal parameters for atoms in one molecule. The thermal parameters

Fig. 2. Geometry of the $1-p$-tolyl-3-(α-cyano)benzylidene-triazene molecule. (a) Bond distances (\AA); (b) Bond angles
${ }^{\circ}$); (c) Non-bonded intramolecular contacts (\AA).
correspond to the expression:

$$
\exp \left[-\left(h^{2} \beta_{11}+k^{2} \beta_{22}+l^{2} \beta_{33}+h k \beta_{12}+k l \beta_{23}+h l \beta_{13}\right)\right] .
$$

The e.s.d. (based upon the inverse least-squares matrix) of each parameter is given in parentheses, applying to the last significant figure. Atom naming is as in Fig. 1. Since the space group symmetry permits the origin to be arbitrarily specified in x and z, only the y parameter of $\mathrm{N}(1)$ was varied. Fig. 2 gives bond distances and angles with e.s.d.'s.
In aromatic triazene ('diazoamine') crystal structures of the form

$$
\mathrm{R}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NH}-\mathrm{N}=\mathrm{N}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{R}
$$

the two $\mathrm{N}-\mathrm{N}$ distances are generally found to be equivalent within experimental error. The same is true if only one of the phenyls is substituted, eliminating the possibility that disorder of the symmetrically substituted triazene causes a pseudoequivalence of the bonds. A difference Fourier on the structure of the unsymmetrical p-methyl and on the symmetrical p dimethyl derivative showed two half-hydrogen peaks on the intermolecular $\mathrm{N}-\mathrm{N}$ vector (Kondrashev, 1969), indicating an equilibrium between tautomeric forms. Kondrashev and co-workers succeeded in biasing this tautomerism by multiple substitution of one of the phenyls. The resulting bond parameters of the triazene moiety in various derivatives are given in Table 4 [names as given in the translated papers: compound (IV), p-dibromodiazoaminobenzene, Kondrashev, 1962; (V), p-bromodiazoaniline, Omel'chenko \& Kondrashev, 1967; (VI), 2,4-dibromodiazoaminobenzene, Omel'chenko \& Kondrashev, 1966]. A similar structure is the copper (I) complex of diazoaminobenzene [(VII) in Table 4; Brown \& Dunitz, 1961] in which the N-N distances are also found to be equivalent. The present structure (III) resembles (VI) in the triazene bond parameters.
There is a tendency in all of these structures for angles analogous to $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ to be distorted by as much as 5° from the expected 120° and in (III) the deviation (ring B) is 7.6°; this is probably due to the unsymmetrical intramolecular contact $\mathrm{N}(2)-\mathrm{C}(2)$

Table 4. Bond parameters of the triazene moiety for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{4}$ and related structures

(Fig. 2c); the corresponding angle for ring A is nearly 120° because the intramolecular contacts are balanced. There are no intermolecular contacts to rings A or B closer than $3.8 \AA$. The three angles in the triazene moiety are not significantly different from those in (VII); the angle $\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(1)$ is similar to the $\mathrm{N}-\mathrm{N}-\mathrm{C}$ angle, $113 \cdot 6^{\circ}$, in trans-azobenzene (Brown, 1966). The distance $\mathrm{N}(1)-\mathrm{C}(1), 1 \cdot 41$, is shorter than in trans-azobenzene $[1 \cdot 433$ (3) \AA], but this difference (2σ) is only marginally significant. Nevertheless, a shortening would be reasonable in view of the increased opportunity for delocalization of electrons. It is tempting to put compound (III) at the end of a sequence of analogues in which trans-azobenzene would be intermediate, and cis-azobenzene (Hampson \& Robertson, 1941) would be at the opposite extreme; in the latter, steric crowding drastically inhibits delocalization ($\mathrm{N}-\mathrm{C}$ distance, $1 \cdot 46 \AA$). The bond distance $\mathrm{N}(2)-\mathrm{N}(3), 1 \cdot 403 \AA$ is shorter than in (VI), in which it is $1.45 \AA$, because in (III) it is adjacent to the $\mathrm{C}(9)=\mathrm{N}(3)$ bond. The distance $\mathrm{N}(1)=\mathrm{N}(2)$ is quite comparable to that ($1 \cdot 243 \AA$) found in trans-azobenzene.
A least-squares plane was computed using the algorithm of Schomaker, Waser, Marsh \& Bergman (1959) with iterative weighting based upon the standard deviations of the atomic coordinates and their projections upon a unit vector normal to the plane on each cycle. The molecule as a whole is very nearly planar, the largest deviation $[C(5)]$ being $0.2 \AA$ and three more being greater than $0.09 \AA$. There are no intermolecular contacts less than $3.9 \AA$ to $C(5)$. Rings A and B are rotated 8.2 and 8.8° respectively, with respect to the plane defined by the three triazene nitrogen atoms.

The distance $\mathrm{C}(8)-\mathrm{N}(4)$ is shorter by 3σ than the $1 \cdot 14 \AA$ usually observed for nitrile bonds, but a thermal motion correction would increase it somewhat. The nitrile angle $\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{N}(4)$ deviates by $6.5^{\circ}(8 \sigma)$ from 180°, probably because of an intermolecular contact of $3.4 \AA$ between $\mathrm{N}(4)$ and $\mathrm{C}(13)$ in a gliderelated molecule. There are also two close intramolecular contacts involving $\mathrm{N}(2) ; 2.472 \AA$ to $\mathrm{C}(8)$ and $3 \cdot 209 \AA$ to $\mathrm{N}(4)$ (Fig. 2). The deviation of $\mathrm{N}(4)$ from a least-squares plane through the eight atoms $\mathrm{C}(8)$, $\mathrm{C}(9)$ and ring A is $0.113 \AA$.

The proposed equilibrium between $\mathrm{CH}_{3}-(\mathrm{I})$ and CH_{3}-(II) would have led one to expect CH_{3}-(I) to be found in the cis conformation, possibly co-crystallized with CH_{3}-(II). However, model-building indicates that the cis isomer may be less stable because of a close
contact between $\mathrm{C}(8)$ and $\mathrm{N}(1)(<2 \cdot 8 \AA$ if the molecule is planar) which would preclude planarity and inhibit delocalization. In solution, the trans form probably predominates. This study provides no support for the existence of a stable nitrene, but does not rule out the possibility that a small amount of this form is present in solution.

The authors wish to thank Dr P.A.S. Smith for supplying purified samples of $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{4}$ and $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{4}$. which were used for this study.

References

Berghuis, J., Haanappel, I. M., Potters, M., Loopstra, B. O., MacGillavry, C. H. \& Veenendaal, A. L. (1955). Acta Cryst. 8, 478.

Brown, I. D. (1966). Acta Cryst. 21, 146.
Brown, I. D. \& Dunitz, J. D. (1961). Acta Cryst. 14, 480. Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Cox, E. G. \& Shaw, W. F. B. (1930). Proc. Roy. Soc. A127, 71.
Hampson, G. C. \& Robertson, J. M. (1941). J. Chem. Soc. p. 409 .

Hughes, E. W. (1941). J. Amer. Chem. Soc. 63, 1737.
Kondrashev, Y. D. (1962). Sov. Phys. Crystallogr. 6, 413.
Kondrashev, Y. D. (1969). Sov. Phys. Crystallogr. 13, 530.
Nordman, C. E. (1960). Acta Cryst. 13, 535.
Nordman, C. E. (1962). Acta Cryst. 15, 18.
Nordman, C. E. (1966). Trans. Amer. Cryst. Assoc. 2, 29.
Nordman, C. E. \& Schilling, J. W. (1970). Crystallographic Computing, pp. 110-114. Edited by F. R. Ahmed. Copenhagen: Munksgaard.
Omel'chenko, Y. A. \& Kondrashev, Y. D. (1966). Sov. Phys. Crystallogr. 10, 690.
Omel'chenko, Y. A. \& Kondrashev, Y. D. (1967). Sov. Phys. Crystallogr. 12, 359.
Schilling, J. W. (1968). Ph. D. Thesis, Univ. Microfilms, Inc., Ann Arbor, Michigan.
Schilling, J. W. (1970a). Crystallographic Computing, pp. 115-123. Edited by F. R. Ahmed. Copenhagen: Munksgaard.
Schilling, J. W. (1970b). Crystallographic Computing, pp. 201-204. Edited by F. R. Ahmed. Copenhagen: Munksgaard.
Schomaker, V., Waser, J., Marsh, R. E. \& Bergman, G. (1959). Acta Cryst. 12, 600.

Smith, P. A. S., Krbechek, L. O. \& Resemann, W. (1964). J. Amer. Chem. Soc. 86, 2025.

Smith, P. A. S., Breen, G. J. W., Hajek, M. K. \& Awang, D. V. C. (1970). J. Org. Chem. 35, 2215.

Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175.

[^0]: * This work was supported in part by grants HE08612 and GM15259 of the National Institutes of Health; and JWS received some financial support from the Union Carbide Corporation, IBM Corporation, and the 3M Company. A report of this work was presented before the American Crystallographic Association on August 25, 1967, at Minneapolis, Minnesota, U.S.A.
 \dagger Present address: Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, U.S.A.

